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Synaptogenesis is a finely organized process, intriguing in

its precise temporal and spatial resolution. It occurs as the

dendrite of a postsynaptic neuron and an incoming axon

communicate at defined sites to establish a stable synapse

together. Themolecular cues that guide synaptogenesis arenow

beginning to be identified, and cell surface interactions at

synaptic sites participate prominently in the key steps.

Interactions include trans-synaptic adhesion of pre- and

post-synaptic neurons but also binding to non-neuronal

neighboring cells and the extracellular matrix. These signals

recruit scaffolding molecules, other adhesion molecules, and

neurotransmitter receptors to bring together the key

components of functional synapses. Recent progress provides

stimulating insights into the role of adhesion and signaling

molecules in the formation and function of synaptic

specializations.
Addresses

Department of Molecular Biophysics and Biochemistry, Yale

University School of Medicine, 333 Cedar Street, New Haven, CT,

06520, USA

Corresponding author: Biederer, Thomas (thomas.biederer@yale.edu)
Current Opinion in Neurobiology 2006, 16:1–7

This review comes from a themed issue on

Development

Edited by Anirvan Ghosh and Christine E Holt

0959-4388/$ – see front matter

# 2005 Elsevier Ltd. All rights reserved.

DOI 10.1016/j.conb.2006.01.009

Introduction
Our understanding of synaptogenesis is rapidly advan-

cing, and studies of cell surface molecules significantly

contribute to this progress [1,2]. Adhesive interactions

play roles in several stages of synaptogenesis, from the

initial physical interaction of axons with target sites to

subsequent synapse induction and later maturation steps.

In this review, we focus on recent research highlighting

the distinct functions of cell surface interactions during

synaptogenesis in both vertebrate and invertebrate sys-

tems. We discuss new work demonstrating important

roles for cell–cell adhesion molecules, the extracellular

matrix and soluble signaling factors. Studies of cell sur-

face interactions are likely to continue to yield important

insights into the cellular and molecular events that guide

synapse formation.
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Cell–cell interactions in target recognition
After axons and dendrites traverse considerable distances

to reach their target, they are presented with an array of

cells with which they could form synapses. Only a subset

of these potential connections are actually formed and the

subcellular localization of innervation is tightly regulated

[3]. Important roles of intercellular adhesion molecules

are being identified in these processes.

SYG-1 and SYG-2 are immunoglobulin (Ig)-superfamily

members that were identified in C. elegans screens for

mutants with improper placement of synapses on vulval

muscle cells [4,5��] (see Figure 1 for invertebrate proteins
active in synaptogenesis). Correct target recognition relies

upon a heterophilic interaction between SYG-1 in the

axons and SYG-2 in epithelial guidepost cells. In the

absence of these molecular cues, the axons form ectopic

synapses, suggesting that these proteins guide localization

of, but not competency for, synapse formation. This

implies that axons and dendrites identify the most appro-

priate target from a competitive landscape, rather than

having a one-to-one relationship with a target cell. SYG-1

and -2 are homologous to the vertebrate nephrins, which

have not been investigated for a role in synaptic target

recognition. Their adhesive interactions might help to

define patterns of synaptic innervation, similar to the

function of Sidekick proteins in laminae of the retina [6].

N-cadherins have long been implicated in synaptic recog-

nition. Support for this model comes from recent genetic

studies in Drosophila, which demonstrate that N-cadher-

ins on both photoreceptor cells and their target neurons in

the optic neuropil are required for proper target selection

[7]. Yet, in vertebrates, cadherins do not appear to func-

tion generally in target recognition [8] (see Figure 2 for

vertebrate proteins active in synaptogenesis). Block of

cadherin-dependent junction assembly does not interfere

with synapse localization but rather with synapse matura-

tion and function.

In addition to the selectivity for particular target neurons,

certain classes of synaptic connections are segregated to

particular subcellular compartments. A recent advance

was made in understanding the molecular basis of sub-

cellular target selection in the cerebellum. Here, neuro-

fascin, a protein belonging to the L1 family of the Ig

superfamily, specifies the site of synaptic input of basket

neurons precisely onto the initial axon segment of Pur-

kinje cells [9�]. This process additionally depends on the

cytoskeletal adaptor protein ankyrin-G. In the absence of

neurofascin and ankyrin-G, the correct number of

synapses is not established. This is an important differ-
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Figure 1

Summary of molecules at invertebrate synapses and their identified roles. Summary of molecules and their identified roles at invertebrate

synapses. Recently characterized proteins include those expressed on presynaptic (red), postsynaptic (yellow), or parasynaptic (blue) membranes.

No secreted or extracellular matrix molecules have yet been characterized to have a role in invertebrate synaptogenesis. Known intracellular

interaction partners are indicated in parentheses.

Figure 2

Summary of molecules at vertebrate synapses and their identified roles. Recently characterized proteins include presynaptic (red), postsynaptic

(yellow), and secreted or extracellular matrix (green) molecules. No non-neuronally expressed cell surface molecules have been identified to

have a role in vertebrate synaptogenesis. Known intracellular interaction partners are indicated in parentheses.
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ence from C. elegans lacking SYG proteins, wherein an

appropriate number of synapses form ectopically. This

could reflect a difference in the specific roles of these

proteins or a general distinction between cues found on

guidepost cells versus those on target cells.

Induction of synaptic specializations
Neuroligins and SynCAM 1 are the only adhesion mole-

cules sufficient for the induction of presynaptic speciali-

sations in vitro [10,11]. Notably, contact with these

adhesion molecules induces neurons to assemble presy-

naptic terminals that have physiological properties vir-

tually identical to those formed between neurons [12�].
Neuroligins and SynCAM 1 are localized at postsynaptic

sites, and interact with presynaptic membrane proteins to

exert their activity. SynCAM 1 engages in a trans-synaptic

interaction with presynaptic SynCAM, and is a member of

a vertebrate-specific family of four adhesion molecules

[13]. Postsynaptic neuroligins heterophilically bind to the

presynaptic neurexins to induce the formation of presy-

naptic terminals [10,14��,15]. Neuroligins are of impor-

tance in neurodevelopment: mutations in neuroligin

genes that interfere with neuroligin trafficking to the cell

surface [16,17] are linked to autism and mental retarda-

tion in humans [18,19]. This implies that altered synaptic

differentiation plays a role in these disorders.

Neurexins are encoded by three different genes contain-

ing internal promoters, which give rise to variants with a

short extracellular sequence, the b neurexins, and with a

long extracellular sequence, the a neurexins [20]. Neu-

roligins can bind b neurexins, which led to their initial

identification [21]. The b neurexin/neuroligin adhesion

system is bi-directionally active: whereas neuroligin can

induce presynaptic terminals, presynaptic b neurexin is

capable of triggering postsynaptic assemblies through

neuroligins [14��,22]. These b neurexin-induced dendri-

tic clusters not only contain neuroligins and excitatory or

inhibitory scaffolding molecules but also neurotransmit-

ter receptors [14��,22]. They are likely to be immediate

precursors for postsynaptic specializations. b neurexin is

the first protein known to have this activity.

Unexpectedly, certain neuroligin variants bind not only b

but also a neurexins [23]. This interaction is strictly

regulated by one splice site present in neuroligins. a

Neurexins have crucial presynaptic functions, and are

necessary for correct function of presynaptic Ca2+ chan-

nels and release of neurotransmitters [24,25]. The same

studies do not reveal a defect in synapse formation in

absence of a neurexins. Trans-synaptic adhesion by the a

neurexin/neuroligin system could, therefore, have impor-

tant physiological roles beyond synapse formation, and

modulate synaptic vesicle exocytosis.

Cytosolic interactions are crucial for the functions of the

above-mentioned synapse-inducing molecules. Neuroli-
www.sciencedirect.com
gins, neurexins and SynCAM proteins all are single-

spanning membrane proteins with intracellular car-

boxyl-terminal tails ending in consensus motifs predicted

to bind PDZ-domain containing adaptor molecules. The

SynCAM 1 cytosolic sequence is necessary for its activity

to promote excitatory neurotransmission [12�] and PDZ-

domain interactions are involved in SynCAM 1 effects on

presynaptic terminal formation and function [11]. Multi-

ple PDZ-domain containing proteins also can bind to the

carboxyl-terminal motif of neuroligins [26], and PDZ

domain interactions are likely to play a role in synaptic

assembly. The adapter molecule PSD-95, located at

excitatory postsynaptic sites, promotes clustering of neu-

roligin 1 and vice versa, and can recruit neuroligin 2 to

excitatory synapses from inhibitory synapses, which is

where endogenous neuroligin 2 is located [14��,15,
27�,28��]. The synaptic localization of neuroligin family

members is, therefore, more dynamic than previously

thought. Intracellular sequences distinct from these

PDZ interaction motifs are involved in the targeting of

neuroligin to dendrites [29] and synapses [30,31].

Specification of synaptic connections
The initial induction of synapses, at least in vitro, is pro-
miscuous, involving some degree of mismatch between

excitatory and inhibitory pre- and post-synaptic compo-

nents [32]. Mismatched sites are eliminated or converted

until nearly all sites are correctly juxtaposed. Themechan-

isms mediating this refinement probably involve cell–cell

interactions between apposed synaptic membranes.

Neuroligins play a role in this process in addition to their

function in synapse induction. Neuroligin 1 is present

only at excitatory postsynaptic sites, whereas neuroligin 2

is preferentially localized at inhibitory synapses [14��,15,
28��,33,34], indicating potentially divergent functional

roles in the specification of synaptic neurotransmitter

type. Neuroligins 1, 2 and 3 promote formation of exci-

tatory presynaptic terminals between neurons with simi-

lar activity [15,28��]. In addition, neuroligins promote

inhibitory presynaptic terminal formation, with neuroli-

gin 2 being the most active [15,27�,28��]. Neuroligins are

also involved — in the reverse direction — in postsynap-

tic specification. Clustering of neuroligin 1 on dendritic

surfaces leads to co-clustering of the excitatory postsy-

naptic scaffolding molecule PSD-95 at these sites. Neu-

roligin 2 clustering similarly causes local aggregation of

PSD-95, but also of the inhibitory postsynaptic marker

gephyrin [14��]. Concurrently, overexpression of neuro-

ligins promotes dendritic spine formation, increases exci-

tatory synapse density and recruitment of postsynaptic

proteins, whereas neuroligin knockdown reduces excita-

tory and inhibitory synapse numbers [12�,15,28��]. The

partial functional overlap of neuroligins in the induction

of excitatory and inhibitory synapses probably explains

why they appear redundant in knockdown experiments

[28��]. This redundancy could involve the promiscuous
Current Opinion in Neurobiology 2005, 16:1–7
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binding of presynaptic b neurexins to the different neu-

roligin proteins [35].

These studies clearly implicate neuroligins in synapse

specification, yet do not identify a simple code that

unambiguously determines induction of excitatory versus

inhibitory synaptic specializations. The molecules iden-

tified to date to be involved in this process are all post-

synaptic; by necessity, however, specifying information

must be present on the presynaptic side as well. Thus,

identification of adhesion molecules preferentially

expressed in excitatory or inhibitory presynaptic mem-

branes will be a major advance. These will be candidate

proteins to participate alongside b-neurexins/neuroligins

to achieve the precise pre- and post-synaptic match of

neurotransmitter specificity found at mature synapses.

Among the molecules implicated in such a role are the

protocadherins, a subset of the cadherin superfamily.

Protocadherins comprise a large family, with nearly 60

members organized into three gene clusters [36].

Enriched at synapses and with a large number of poten-

tially specific binding partners, a- and g-protocadherins

are well suited to specify appropriate synaptic interactions

in distinct, although overlapping, subsets of neurons

[37,38]. Indeed, loss of the g-protocadherin gene cluster

leads to synaptic deficits in mouse spinal cord [39], with a

reduction in the number of both excitatory and inhibitory

puncta and a concomitant loss in excitatory puncta size. It

remains to be determined whether individual g-proto-

cadherins specify identifiable sets of synapses.

Presynaptic interactions in synapse
maturation and stabilization
An important advance in our understanding of presynap-

tic maturation was made at the neuromuscular junction.

The laminin b2 subunit, a component of the extracellular

matrix within the synaptic cleft of neuromuscular

synapses, binds to presynaptic voltage-gated Ca2+ chan-

nels [40��]. This interaction clusters these channels and is

required for correct active zone assembly. This study

highlights the important roles of extracellular matrix

interactions in synaptic differentiation, which can also

be expected to affect formation of synapses in the CNS.

Indeed, the proteoglycan versican supports the matura-

tion of synaptic contacts of incoming retinal axons, target

neurons of which are in laminae of the optic tectum [41].

Versican is a component of the extracellular matrix sur-

rounding these target neurons, and the presynaptic term-

inals of innervating retinal axons increase their size upon

contact. Hence, versican combines two important func-

tions — target recognition and presynaptic maturation.

Interestingly, the samesignaling pathway canmediateboth

presynaptic differentiation and axonal morphological

changes. The activity-induced membrane protein CPG15

promotes axon branching and extension in addition to
Current Opinion in Neurobiology 2005, 16:1–7
synapse formationwhenoverexpressed in axons [42].Nota-

bly, this study showed that newaxonbranches emerge from

presynaptic sites, indicating that both are formed by over-

lapping differentiation pathways. Integrin binding to the

extracellularmatrix andensuing signalingmightparticipate

in these differentiation events, as the integrin-activated

nonreceptor tyrosine kinase FAK (focal adhesion kinase)

downregulates axon branching and synapse number [43].

A prominent invertebrate Ig-domain containing protein

with a role in synapse stabilization and maturation is the

Drosophila FasII protein. A widely held model for the role

of FasII is that expression of the molecule constrains

synaptogenesis, whereas hypomorphic expression

removes this restriction. This model is supported by

studies in which FasII expression levels were lowered

or raised on one side of the fly neuromuscular junction

[44]. However, raising expression levels of FasII on both

sides of the synapse simultaneously results in an increase

in synaptic bouton number [45], calling for a refinement

of this model. The morphological and physiological

changes elicited by altering FasII levels depend on its

ability to bind the Drosophila homolog of the amyloid

precursor protein, APPL, and the scaffolding protein

Mint 1. Interestingly, the deletion of APP and APP-like

protein 2 in mice causes multiple ultrastructural presy-

naptic defects [46,47], indicating that they organize pre-

synaptic terminals in both vertebrates and invertebrates.

The importance of symmetric expression of a homophilic

adhesion molecule across the synaptic cleft, as shown for

FasII, indicates that appropriately matched levels of

signaling and scaffolding molecules need to be recruited

to both sides of a nascent synapse. Thus, an important

determinant of synapse number and location might well

be not only the identity of cell adhesion molecules on the

apposed membranes, but also their local concentration.

Several soluble factors are now known that control pre-

synaptic differentiation [48�,49�]. Thrombospondins

(TSPs), extracellular matrix molecules secreted by astro-

cytes, promote formation of synapses in vitro and TSP

knockout animals display reduced synapse density [48�].
TSPs affect presynaptic properties and are likely to stabi-

lize newly forming synaptic sites, highlighting the roles of

glial cells in synapse development. By contrast, the fibro-

blast growth factor family member FGF-22 is secreted by

target neurons [49�]. FGF-22 promotes clustering of recy-

cling synaptic vesicles in terminals that form on cerebellar

granule cells and enhances axon branching. It is likely to

function through a presynaptic or axonal FGF receptor.

TSP andFGF signalingmight operate inmultiple types of

central neurons, but this remains to be elaborated.

Involvement of the postsynaptic side in
synaptic differentiation
Postsynaptic signaling through the neurotrophin receptor

TrkB is necessary for correct synapse density, ultrastruc-
www.sciencedirect.com
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ture and excitatory neurotransmission [50]. Other cell

surface molecules have also been linked to thematuration

of postsynaptic excitatory sites. The leukocyte common

antigen-related family receptor protein tyrosine phospha-

tases (LAR-RPTP) proteins have extracellular Ig and

fibronectin domains similar to adhesion molecules and

are localized to excitatory synapses in the mammalian

nervous system [51��]. LAR-RPTPs interact intracellu-

larly with liprin-a and the adapter molecule GRIP to

recruit AMPA receptors to synapses and affect postsy-

naptic maturation [52]. Interference with the phosphatase

activity of LAR-RPTPs or their ability to interact with

liprin-a decreases synapse and spine density and excita-

tory neurotransmission [51��]. This process involves the

interaction between liprin-a and GRIP downstream of

LAR-RPTPs. These effects probably reflect a role of

LAR-RPTPs in recruitment of other proteins to nascent

synapses, notably proteins involved in cadherin junctions.

As block of cadherin function reduces synapse size,

vesicle recycling and frequency of excitatory neurotrans-

mission [8], it appears that the LAR-RPTPs and cadher-

ins function together. LAR not only organizes maturing

postsynaptic sites but also affects presynaptic active zone

differentiation. In C. elegans, the LAR family member

PTP-3A anchors the liprin-a homolog SYD-2 at presy-

naptic sites and thus controls presynaptic terminal size

[53].

Dasm1, a recently identified Ig-domain containing pro-

tein, also functions in postsynaptic differentiation [54,55].

Postsynaptic Dasm1 recruits AMPA receptors and affects

excitatory transmission through intracellular interactions

with PDZ domain containing proteins [54]. Dasm1, in

addition, modulates the outgrowth and complexity of

dendritic arbors, indicating that dendritic and postsynap-

tic differentiation can utilize the same pathways [55],

similar to how presynaptic and axonal differentiation can

use the same pathways. The presynaptic interaction

partner of Dasm1 is yet unknown. New evidence for a

role of a different Ig-superfamily member, NCAM, in

synaptic differentiation further implicates extracellular

matrix interactions in synaptic differentiation [56]. The

postsynaptic expression of NCAM and its binding of

proteoglycans is correlated with enhanced synapse for-

mation.

Conclusions and outlook
The analysis of cell surface interactions guiding synapto-

genesis is burgeoning at a rapid pace with the identifica-

tion of more players. This advance is likely to continue.

The extracellular interaction partners for several of the

molecules reviewed here remain to be identified. Simi-

larly, the role of the extracellular matrix in synapse

induction and maturation is likely to receive more atten-

tion. On the intracellular side of these interactions, many

of the signaling pathways and protein scaffolds that

develop at sites of nascent synapses remain to be unra-
www.sciencedirect.com
veled. Furthermore, functional studies of synaptic differ-

entiation will benefit from analyses of concomitant

structural changes. This will be necessary to understand

the spatially extremely well defined assembly of synaptic

membranes. An important step into this direction is the

recent high-resolution visualization of adhesive interac-

tions in the synaptic cleft [57]. Finally, the analysis of

known cell–cell interactions in synaptogenesis will need

to includemore in vivo studies to complement the current

focus on results obtained in neuronal culture. Genetic

screens for mutants in this process, for example in zebra-

fish [58], might be one in vivo approach to identify novel

vertebrate molecules participating in this process.
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