
Available online at www.sciencedirect.com

Signaling by synaptogenic molecules
Thomas Biederer and Massimiliano Stagi
Multiple signaling pathways initiate and specify the formation of

synapses in the central nervous system. General principles that

organize nascent synapses have emerged from the studies in

multiple model organisms. These include the synapse-

organizing roles of dedicated synaptic adhesion molecules,

synaptic signaling following receptor–ligand interactions, and

the regulation of synapse formation by secreted molecules.

Intracellularly, a range of effectors subsequently regulates

signaling steps and cytoskeletal changes. Together, a blueprint

of synapse formation is emerging into which these distinct

signaling steps will need to be integrated temporally and

spatially.
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Introduction
Synapse formation is a key process in brain development.

It occurs subsequent to the birth and migration of neurons

and their initial differentiation, and is central to the

formation of neuronal networks. Synaptogenesis remains

important in the adult brain for the activity-dependent

reorganization of neuronal networks. Understanding

these processes on the molecular level not only provides

insights into a fundamental problem of cellular neuro-

science but also is biomedically relevant, as aberrations in

synapse-organizing molecules are linked to autism-spec-

trum disorders (ASDs), mental retardation, and neuro-

logical disorders.

Synaptic structures develop in consecutive assembly

steps [1,2]. Cell–cell interactions mediate the initial con-

tact of apposed neuronal membranes. This is followed by

the differentiation of these membranes into presynaptic

and postsynaptic specializations, a process shaped by

cytoskeletal changes. Later steps include the pruning

of synapses and finally their elimination. Along this path,
www.sciencedirect.com
different signals assemble protein complexes to give rise

to the diverse types of central synapses, which vary in

their target specificity, neurotransmitter use, and

morphology.

This review highlights the progress made in the past two

years in our molecular understanding of synapse for-

mation. For a general overview, we would like to refer

the reader to recent reviews [2–4].

Adhesive interactions of neurexins and
neuroligins organize developing synapses
Trans-synaptic adhesion molecules can control the initial

differentiation of nascent synapses. This was first demon-

strated for neuroligins — postsynaptic membrane

proteins that bind the presynaptic neurexins [5,6]

(Figure 1). Three neuroligin genes are predominantly

expressed in mouse brain, while three genes encode the

neurexins. Each neurexin gene has two different promo-

ters, giving rise to a long a-isoform and a short b-isoform

that differ only in their extracellular sequences. Neuro-

ligins induce neurons to form synaptic terminals through

their trans-synaptic interactions with presynaptic neurex-

ins. In turn, neurexins induce the assembly of neuroligin-

containing postsynaptic specializations.

Corresponding to the early roles of neuroligins in synapse

formation, they are the part of mobile dendritic protein

complexes that are stabilized during synapse assembly [7]

and mark sites where axons form terminals [8]. In

addition, neuroligins contribute to synapse specification:

Neuroligins 1 and 2 differ in their propensity to promote

excitatory and inhibitory synaptic specializations,

respectively, consistent with their differential localization

to these two synapse types [9–12]. Neuronal activity is

required to achieve this enhancement of excitatory and

inhibitory transmission by neuroligins [12]. With respect

to postsynaptic differentiation, trans-synaptic interactions

of a-neurexin co-cluster neuroligin 2 with inhibitory

markers [13]. Notably, neuroligins not only affect the

differentiation but also the plasticity of synapses, as

shown for the neuroligin 1-mediated regulation of pre-

synaptic release probability at excitatory synapses [14�].

These interactions of the neuroligin/neurexin adhesion

molecules are regulated by alternative splicing, which

modulates their binding in trans. A short, splicing-con-

trolled insert in the extracellular sequence of neuroligin 1

that encodes an N-glycosylation site negatively regulates

its binding to a-neurexin [15] and decreases [11] or

abolishes [10,15] neuroligin binding to a splice isoform

of b-neurexin. Further, the splicing of neuroligins at this
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Figure 1

(A) Structure of neuroligins and a- and b-neurexins. The neuroligin 1 splice site that regulates its binding of a-neurexin over b-neurexin is highlighted by

an asterisk. Pre: presynaptic membrane; post: postsynaptic membrane. (B) Key insights recently gained from in vivo studies of neurexins and

neuroligins.
extracellular site controls their sorting to excitatory and

inhibitory postsynaptic specializations [10]. Several find-

ings demonstrate that alternative splicing also regulates

neurexin and neuroligin activities. First, splicing of b-

neurexin alters its ability to induce excitatory postsynaptic

assemblies preferentially [11] or specifically [10], without

affecting b-neurexin’s parallel induction of inhibitory post-

synaptic sites. Neuronal activity regulates this splicing of

b-neurexin, further pointing to its dynamic roles [13].

Second, the neuroligin 1 splice form capable of interacting

with a-neurexin promotes presynaptic and postsynaptic

growth in addition to synapse formation [15]. Third, spli-

cing in the extracellular neuroligin 1 site referred to above

has been reported to switch its activity from promiscuously

inducing excitatory and inhibitory postsynaptic sites to

being a specific excitatory synaptogenic molecule [10].

This effect was not observed in another study [12], perhaps

because of differences in expression levels or culturing

conditions. In addition to splicing, interactions in cis con-

stitute another regulatory mechanism. A fraction of neur-

exins was identified in postsynaptic membranes, where

they can bind laterally to neuroligins to silence them [16].

These studies in dissociated neuronal cultures helped to

develop the concept of neuroligins as synapse-inducing

molecules with different roles in excitatory and inhibitory

synapse formation. From a general point of view, studies

in vivo support their synapse-organizing roles. Neuroli-

gins specifically function in excitatory and inhibitory

synaptic transmission, as shown in single knock-out mice

[12]. These combined activities are of vital importance:

neuroligin triple knock-out mice die soon after birth

because of imbalanced excitatory and inhibitory trans-

mission in brainstem ensuing respiratory failure [17��].
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However, neuroligins do not affect synapse number or

morphology in brainstem at the time of birth, pointing to

prominent roles in synapse maturation. This differs from

the synaptogenic functions of neuroligins in vitro, a dis-

crepancy that remains to be resolved. It may involve

redundancy with other synaptogenic systems in vivo, as

well as potential developmental changes in the functions

of neuroligins. Future studies using conditional neuroli-

gin knock-out mice could address these points by analyz-

ing the acute loss of neuroligins in higher brain regions at

later postnatal stages, when most synaptogenesis occurs.

Invertebrates offer less redundant systems to investigate

synaptic adhesion molecules in vivo. Two studies in

Drosophila, which has only one a-neurexin and no b-

isoform, now report that neurexin controls synapse ultra-

structure and number in vivo [18,19]. They demonstrate

that a-neurexin is presynaptic at the fly neuromuscular

junction (NMJ) and is required for the proper apposition

of active zones to postsynaptic densities, normal synapse

density, and synaptic transmission. In addition, Drosophila
neurexin is sufficient to promote overall numbers of

presynaptic boutons [18]. This is consistent with a

previous study showing that a-neurexins are required

for normal inhibitory synapse number in mice [20]

Human genetic studies support the importance of neur-

exins and neuroligins in brain development. Following

previous studies of human neuroligin mutations in neuro-

developmental disorders, mouse models were developed

that exhibit altered neuroligin expression and that corro-

borate changes in synapse organization and ASD-linked

behavior [21�,22]. Recent linkage analyses also implicate

imbalanced neurexin gene dosage in ASD [23,24].
www.sciencedirect.com
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Together, neurexins and neuroligins have intriguing and

essential synaptic functions. However, the facts that

synapses form normally in mice lacking neurexins and

neuroligins at birth, and that members of both families

have overlapping synapse-specifying roles, point to the

importance of parallel synaptogenic interactions.

Synapse organization by Ig-domain and LRR-
domain containing adhesion molecules
Similar to neurexins and neuroligins, adhesion molecules

of the immunoglobulin (Ig) superfamily and proteins

containing extracellular leucine-rich repeats (LRRs)

additionally mediate the presynaptic and postsynaptic

differentiation of central neurons (Figure 2).

The synaptic Ig-containing membrane protein SynCAM

1 (also named nectin-like 2) induces neurons to form

functional excitatory presynaptic specializations [25]

similar to neuroligin 1 [26]. Although capable of homo-

philic binding, SynCAM 1 preferentially interacts with

the related SynCAM 2 to form an asymmetric trans-

synaptic adhesion complex, and both proteins promote

excitatory synapse number and function [27�]. The differ-

ential neuronal expression and heterophilic adhesion

profiles of SynCAMs are reminiscent of an adhesive code

and indicate distinct roles in synapse organization and

specification [28]. All four family members share intra-

cellular motifs binding to FERM domains of cytoskeletal

adaptors and PDZ domains of scaffolding molecules,
Figure 2

Members of the Ig superfamily and proteins containing extracellular leucine
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pointing to these interactions as synaptogenic steps

downstream of SynCAM adhesion.

Other studies identified the LRR- and Ig-domain con-

taining membrane proteins NGL2 (netrin-G-ligand 2)

and SALMs (synaptic adhesion-like molecules). NGL2

is a postsynaptic partner of the axonal, GPI-anchored

protein netrin-G [29�]. Intracellularly, it binds to a

PDZ domain of the scaffolding molecule PSD-95 to

assemble postsynaptic proteins of excitatory synapses.

Through its extracellular interactions, NGL2 in turn

initiates presynaptic terminals. This activity presumably

involves interactions with both netrin-G and other, yet

unknown presynaptic transmembrane proteins that can

signal into the terminal. Similar to NGL2, several SALM

family members interact intracellularly with PSD-95, but

differ in their developmental functions. At later stages of

neuronal differentiation, SALM2 affects the clustering of

postsynaptic molecules and increases the number of

excitatory synapses [30], while SALM1 promotes neurite

outgrowth at early stages [31]. No effects of SALMs on

presynaptic organization are known. However, SALMs

form distinct homophilic and heterophilic interactions

[32], suggesting adhesive roles on both sides of synapses.

Ig superfamily members also specify the localization of

nascent synapses in vertebrates. This was shown in

cerebellum, where the axons of stellate interneurons

are guided by the Ig protein CHL1 (close homolog of
-rich repeats that are involved in synapse differentiation.

Current Opinion in Neurobiology 2008, 18:261–269



264 Signalling mechanisms
L1) on Bergman glial fibers toward Purkinje cell den-

drites [33]. Consequently, the interactions of CHL1 form

and position these GABAergic synapses.

How are adhesion molecules signaling across
membranes to initiate synapses?
The pathways downstream of synaptic adhesion remain

insufficiently understood. Progress was made for neurex-

ins and SynCAMs with the finding that their induction of

presynaptic specializations involves the kinase Cdk5

[34�]. This indicates that both adhesion proteins engage

overlapping signaling pathways, consistent with their

similar intracellular sequences. Cdk5 also phosphorylates

the adaptor molecule CASK, thereby regulating its inter-

action with neurexins [34�]. Cdk5-mediated phosphoryl-

ation of CASK may provide a direct presynaptic link from

sites of neurexin-mediated adhesion to the CASK binding

partner liprin-a, which organizes active zone formation in

C. elegans [35]. However, identifying the signaling path-

ways of synapse-inducing adhesion molecules remains a

critical open question.

Adhesion molecules also modulate
synaptogenesis
Synaptic adhesion can not only signal the formation of

synaptic specializations, it additionally modulates nascent

synapses. Cadherins, among the best-studied synaptic

adhesion molecules, are not synaptogenic but set the

pace of synaptic maturation [36,37]. This is in keeping

with their subsynaptic relocalization in development [38].

Cadherin signaling engages multiple pathways on both

sides of the developing synapse. Presynaptically, cross-

talk of neurotrophin and cadherin signaling occurs [39].

Neurotrophins, which regulate synapse formation,

mobilize synaptic vesicles and subsequently promote

excitatory synapse numbers by disrupting the interaction

of cadherins with b-catenin, a multifactorial adaptor for

signaling molecules and transcription factors. Postsyn-

aptically, the cadherin partner p120-catenin controls

Rho family GTPases, whose functions include the regu-

lation of the actin cytoskeleton as well as cadherin levels

themselves [40�]. Through these interactions, p120

modulates postsynaptic spine differentiation and synapse

density in the developing brain.

Integrins are another prominent class of adhesion mol-

ecules that transduce signals from the extracellular matrix.

Recent evidence shows that they shape postsynaptic sites

through controlling tyrosine kinases and G proteins. The

a5 integrin subunit regulates spine and synapse formation

through the nonreceptor tyrosine kinase Src and the G

protein regulator GIT1 (G-protein-coupled receptor

kinase-interacting protein 1) [41]. Integrins also activate

the nonreceptor tyrosine kinase Arg, which in turn inhibits

the RhoGAP (GTPase activating protein) p190 [42]. Con-

sequently, Arg signaling modulates synapse maintenance

and spine maturation in the maturing brain.
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Signaling receptors in synaptogenesis
In contrast to adhesion molecules, transmembrane

receptors can directly transduce synaptogenic signals

across synaptic membranes (Figure 3). Several receptor

tyrosine kinases, including EphB and Trk receptors,

localize to synapses and help to instruct synaptogenesis.

EphB receptors, which are mostly postsynaptic, signal

intracellularly through a tyrosine kinase domain upon

extracellular binding of their ephrinB ligands. The

deletion of multiple EphB receptors in mice reduces

synapse density and alters spine morphology [43],

demonstrating that ephrin-to-EphB forward signaling

controls excitatory synapses in vivo. A synaptogenic role

was also confirmed for presynaptic terminals in cultured

hippocampal neurons. Here, reverse EphB2 signaling

from postsynaptic sites triggers presynaptic differen-

tiation through ephrin binding [44�]. This occurs in

parallel to EphB receptor-mediated postsynaptic gluta-

mate receptor assembly. Similarly, in the optic tectum

of Xenopus, EphB2 receptors engage presynaptic

ephrinB ligands to trigger their reverse signaling, which

increases the formation and maturation of retinotectal

synapses and enhances synaptic transmission and poten-

tiation [45��].

What are the intracellular pathways of EphB receptor

signaling at the synapse? The kinase activity of Eph

receptors is known to signal through several small

GTPases, including Rho and Rac family members,

thereby remodeling the actin cytoskeleton. Recent stu-

dies expand this signaling repertoire. Tiam1, a guanine

nucleotide exchange factor (GEF) that activates Rac1,

interacts postsynaptically with the EphB2 receptor after

ephrin stimulation to promote excitatory spine density

[46]. In a parallel pathway, stimulated EphB receptors

bind focal adhesion kinase to activate RhoA through an

intracellular signaling complex that shapes postsynaptic

sites [47].

However, ephrin ligands are not only presynaptic but can

also be present in excitatory postsynaptic membranes

where they mediate reverse EphB-to-ephrin signaling.

Postsynaptic ephrinB3 was identified to promote spine

density and maturation after the stimulation by the EphB

receptor, forming a complex with the G protein regulator

GIT1 [48] that also functions downstream of integrin

signaling [41]. Postsynaptic ephrinB3 additionally affects

the subset of excitatory synapses that are directly formed

on the dendritic shaft, controlling the number of these

shaft synapses [49]. Perhaps surprisingly, reverse ephrin

signaling can also negatively regulate synapse numbers

in addition to the synaptogenic roles described above.

This was observed in mice lacking ephrinB3, which

display an increase in excitatory synapses in hippocampal

neurons [50]. The pathways determining these contrast-

ing effects of reverse ephrinB signaling remain to be

identified.
www.sciencedirect.com
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Figure 3

Roles of signaling receptors in synaptic differentiation.
Important functions in synapse differentiation are shared

by other transmembrane receptor tyrosine kinases. These

include the Trk receptors, which mediate neurotrophin

signaling in neuronal and synapse differentiation [51].

Signaling by the insulin receptor also regulates synapse

number and function. Studies in the Xenopus optic tectum

identified that a dominant-negative insulin receptor

strongly reduces the density of functional synapses along

the dendritic tree, as well as the experience-dependent

shaping of dendrites [52��]. This is consistent with a

synapse-promoting function of the insulin receptor in
vivo. Another family of receptor tyrosine kinases, the

ErbB receptors, is already known to act in the formation

of NMJs. Their roles in central synapses are now emer-

ging, with ErbB4 promoting excitatory transmission in

hippocampus [53] and its ligand neuregulin-1 enhancing

GABA release from cortical interneurons [54]. As neur-

egulin is a schizophrenia susceptibility gene, and as

synaptic alterations occur in this disorder, it will be of

interest whether aberrations in this signaling pathway

underlie the disorganization of central synapses in schizo-

phrenia.

Synaptic transmembrane signaling is of course not

limited to receptor tyrosine kinases. Yet, it was unex-

pected that the ligand-gated cation channel TRPC6

(transient receptor potential canonical), which belongs
www.sciencedirect.com
to the TRP family of calcium-permeable channels,

mediates synapse-organizing signaling across dendritic

membranes [55]. TRPC6 is localized to excitatory

postsynaptic sites to promote synapse densities in

hippocampal neurons via stimulating CREB-controlled

transcription, and alters hippocampus-dependent beha-

vior. This opens up functions for the diverse family of

TRP channels and their yet unknown synaptogenic

ligands in the brain.

Soluble signaling molecules secreted by
neurons and glia locally shape presynaptic
sites
Control of synaptic differentiation is not restricted to the

very short range that surface molecules provide. Soluble

signaling molecules, such as morphogens that pattern

tissues, also affect synapse formation and differentiation.

One case is the synaptic functions of morphogenetic Wnt

signaling. In cerebellum and hippocampus, Wnt7 posi-

tively regulates the assembly of presynaptic sites after its

release by target neurons [56]. But at least in invert-

ebrates, retrograde Wnt signaling also can conversely

inhibit synapse formation to ensure synaptic target speci-

ficity. This was observed both in the Drosophila NMJ [57]

and in C. elegans, where Wnt morphogens directly control

their receptor localization in axons to restrict presynaptic

bouton formation to discrete sites [58�].
Current Opinion in Neurobiology 2008, 18:261–269
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Morphogens are not the only soluble signals that regulate

synapse formation, and neither is signaling limited to

neuron-derived factors. This is exemplified by synaptic

netrin signaling in C. elegans. Subsequent to its early

developmental roles in axon guidance, netrin is locally

secreted by glia cells to promote the formation of pre-

synaptic boutons by specific neurons [59]. In vertebrates,

the glial cell line-derived neurotrophic factor (GDNF)

promotes hippocampal synaptogenesis through a less

familiar type of receptor interaction. GDNF binding

causes apposed receptor molecules to homophilically

bridge presynaptic and postsynaptic membranes, which

initiates presynaptic terminal differentiation [60]. Corre-

spondingly, the lack of GDNF reduces synapse density in
vivo. These findings underline the importance of neuron–
glia signaling in synaptogenesis [61].

Cytoskeletal dynamics in synapse
differentiation
Following adhesion and signaling, cytoskeletal changes

underlie the differentiation of local plasma membrane

surfaces into synaptic specializations. These structural

transformations of nascent synapses involve the GEFs

and GAPs for small G protein regulators of the actin

cytoskeleton referred to above. Actin dynamics at post-

synaptic excitatory specializations are also regulated by

N-WASP, which activates the actin-nucleating Arp2/3

complex to enhance the local formation of excitatory

spines and synapses by hippocampal neurons [62]. Cor-

respondingly, a dominant-negative form of the actin-

binding protein spectrin interferes with postsynaptic

assembly [63]. The presynaptic cytoskeleton is dynami-

cally regulated as well, as shown for ankyrin, a spectrin-

binding protein [64,65]. At the Drosophila NMJ, ankyrin

forms a presynaptic lattice that organizes microtubules

and adhesion proteins to restrict bouton size and control

synapse number.

Activity-dependence of synapse organization
A key question is how activity affects synaptogenic sig-

naling, as this can underlie synaptic homeostasis. The

identification of activity-dependent functions of neuroli-

gins represents one advance in addressing this question

[12]. But neurons alter synapse density globally to adjust

to activity levels and insights into this process are being

gained as well. The transcriptional regulator MeCP2,

which is mutated in the neurodevelopmental disorder

Rett syndrome, was identified as an activity-dependent

positive regulator of excitatory synapse formation and

function [66�]. Conversely, the transcription factor

MEF2 represses excitatory synapse density in activated

neurons [67]. Although GABAergic synapse formation is

less well understood than excitatory synaptogenesis [6],

its activity-dependence can be surprisingly direct;

changes in the levels of GABA itself, which fluctuate

in an activity-dependent manner in inhibitory neurons,

regulate inhibitory synapse formation in cortex [68].
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Screens for synaptogenic molecules
To gain more insight into synaptogenic signaling in

vertebrate neurons, nonbiased approaches need to extend

the analyses of candidate proteins. A beginning was made

with a study that combined transcriptional profiling with

RNAi in hippocampal neurons [69]. It identified that

postsynaptic cadherins and membrane-bound semaphor-

ins differentially control the alignment of synaptic sites at

nascent synapses. This approach can now be pursued in

larger scale screens. Another angle was used in a genome-

wide screen for molecules expressed during synapse

formation [70]. Such approaches in vertebrate neurons

will likely complement the genetic studies of synapse

organization in invertebrates.

Outlook: how do synaptic signaling
mechanisms come together?
Synapse formation requires multiple signaling mechan-

isms that demarcate future synaptic sites, align and

specify them, and differentiate these nascent synapses

to maturity. As reviewed above, a number of proteins

have recently been identified to contribute to these

signaling processes. Shared principles are emerging, such

as the instructive roles of trans-synaptic interactions by

adhesion molecules, the synaptogenic functions of re-

ceptor tyrosine kinases, and the modulation of synapse

formation by secreted signaling molecules. However, it is

now a key task to define the temporal and spatial interplay

of signaling molecules in synapse assembly, maturation,

and maintenance. This will allow understanding how

synapse development is instructed and specified at differ-

ent synapse types and across brain regions.

Future studies will also need to consider the differential

contribution of signaling to synapse formation or main-

tenance. The net outcome — an increase in synapse

numbers — is the same, but these two aspects of synapse

organization will probably employ very different path-

ways, which need to be elucidated. Additionally, the

mechanisms that link activity-dependent changes to

synaptic differentiation remain to be characterized in

detail. Another important goal will be to better under-

stand the signals that coordinate the converse process to

synaptogenesis, namely synapse elimination, which is

unlikely to be just the reverse of synapse formation.

In summary, a range of molecular interactions provide for

synapse formation. On the molecular and cellular level,

future studies will identify both the signaling pathways

that are fundamentally shared in synaptogenesis and those

that specify it. Ultimately, these processes will have to be

understood within the context of the brain itself [71].
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