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Chemical synapses are asymmetric intercellular junctions that mediate synaptic trans-
mission. Synaptic junctions are organized by trans-synaptic cell adhesion molecules bridg-
ing the synaptic cleft. Synaptic cell adhesion molecules not only connect pre- and postsyn-
aptic compartments, but also mediate trans-synaptic recognition and signaling processes that
are essential for the establishment, specification, and plasticity of synapses. A growing
number of synaptic cell adhesion molecules that include neurexins and neuroligins, Ig-
domain proteins such as SynCAMs, receptor phosphotyrosine kinases and phosphatases,
and several leucine-rich repeat proteins have been identified. These synaptic cell adhesion
molecules use characteristic extracellular domains to perform complementary roles in or-
ganizing synaptic junctions that are only now being revealed. The importance of synaptic
cell adhesion molecules for brain function is highlighted by recent findings implicating
several such molecules, notably neurexins and neuroligins, in schizophrenia and autism.

SYNAPTIC CELL ADHESION

Synapses constitute highly specialized sites of
asymmetric cell–cell adhesion and intercel-

lular communication. The very first studies of
synapse ultrastructure already described their
“triple structure” comprised of pre- and postsyn-
aptic membrane specializations and synaptic
cleft material, concluding that “the thickened
regions show special adhesive properties (Gray
1959).” Adhesion is an important structural
aspect of synapses as evidenced by the fact that
pre- and postsynaptic specializations remain
tightly attached upon biochemical fractionation
(Gray and Whittaker 1962). Indeed, ultrastruc-

tural studies have shown that the material cross-
ing the synaptic cleft is periodically organized
and composed of highly concentrated proteina-
ceous material (Lucic et al. 2005; Zuber et al.
2005).

The spatially and temporally coordinated as-
sembly of pre- and postsynaptic membranes is
consistent with instructive roles of synaptic cell
adhesion in synapse development. The precise
overlap of pre- and postsynaptic specializations
additionally indicates that interactions across
the cleft delineate their mutual boundaries
(Schikorski and Stevens 1997). The regular
width of the synaptic cleft further shows that ad-
hesive interactions may act as “molecular rulers”
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to define its span (Palade and Palay 1954; Gray
1959). During synaptogenesis, axonal growth
cones and their dendritic targets frequently ex-
tend filopodia to form initial contacts (Cooper
and Smith 1992). Synaptic membrane special-
izations assemble at these contacts as ultrastruc-
turally defined by synaptic vesicles, electron-
dense cleft material, and thickened postsynap-
tic membranes, and the intercellular distance
widens from an initial 13 nm interstitial space
to the final �20 nm “cleft” (Rees et al. 1976). Fi-
nally, mature synapses are subject to activity-
dependent structural and functional plasticity
mechanisms that remodel them, and that may
be regulated by synaptic cell adhesion (Toni
et al. 1999; Knott et al. 2002). Moreover, syn-
apses continue to be formed and eliminated
throughout the lifetime of an organism. Synapse
formation and elimination are most active dur-
ing the postnatal period of development during
which a vertebrate brain acquires maturity, but
are continuously operating to support learning
and memory processes as well as regenerative
processes in disease.

The proteins crossing the synaptic cleft are
collectively referred to as synaptic cell adhesion
molecules (Akins and Biederer 2006; Piechotta
et al. 2006), a somewhat misleading term be-
cause these molecules most likely do not only
function in cell adhesion, but also in intercel-
lular trans-synaptic signaling. Criteria for a
synaptic cell adhesion molecule include their
localization to synapses at one or more stages
of development, functions in cell–cell interac-
tions, and evidence for altered synapse forma-
tion and/or function after the loss-of-function
or increased expression of these proteins.

In the present article, we will focus on the
contributions of synaptic cell adhesion mole-
cules throughout the lifetime of a synapse. Syn-
apse formation is a complex multistage process.
A conceptual division of synapse formation
into four stages postulates that initial establish-
ment of synaptic contacts is followed by assem-
bly of the pre- and postsynaptic molecular ma-
chinery, functional specification of the incipient
synapses, and finally synaptic plasticity (Fig. 1).
Contact establishment involves recognition of
pre- and postsynaptic neurons at the site of fu-

ture synapses. The molecular assembly stage
includes recruitment of synaptic vesicles, active
zones, and postsynaptic density structures to a
developing synaptic contact, resulting in an ana-
tomically identifiable synapse, but does not in
itself produce a functional synapse. Functional-
ity of a synapse is achieved with the organiza-
tion of its molecular components during the
functional specification stage, which also con-
fers specific properties to a synapse. Synaptic
plasticity is viewed here as an extension of syn-
apse formation that often involves changes akin
to the molecular assembly and functional speci-
fication of a synapse. All of these stages likely re-
quire synaptic cell adhesion molecules and are
mediated by sequential protein–protein interac-
tions, and many of these processes are probably
activity dependent. The adhesive mechanisms
and signaling pathways guiding synapse forma-
tion are only now beginning to be recognized.

TOOL BOX OF SYNAPTIC CELL ADHESION:
MULTIPLE DOMAINS, BINDING
PROPERTIES, AND FUNCTIONS

Although synaptic cell adhesion molecules com-
prise a number of proteins that are specialized
for distinct functions in the recognition, molec-
ular assembly, and/or specification of chemical
synapses, their adhesive and functional specific-
ity is based on a limited number of extracellular
domains. These domains are often assembled
into repeated units, which may not only increase
the number of possible interactions but also al-
lows them to protrude into or cross the synaptic
cleft and provide for mechanical stability. Below,
we discuss these domains as building blocks of
synaptic cell adhesion.

Immunoglobulin- (Ig-) domains. Ig-domains
are animal cell adhesion domains that most
frequently bind to other Ig-domains, either as
homo- and heterophilic complexes. Ig-domains
are composed of a b-sandwich that is often sta-
bilized by a disulfide bond; most cell-adhesion
molecules containing Ig-domains also contain
fibronectin III (FnIII) domains with a similar
b-sandwich fold.

Cadherin domains. Cadherin domains are
characterized by an all-b fold, and always occur
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in multiple copies connected by a linker that
binds 2–3 Ca2þ-ions, which leads to the char-
acteristic curvature of cadherin extracellular do-
mains (Pokutta and Weis 2007). Cadherin-
mediated interactions are Ca2þ-dependent and
often homophilic.

Laminin A, neurexin, and sex hormone-bind-
ing protein (LNS) domains (a.k.a. laminin G-
like LG-domains). LNS domains are composed
of a lectin-like b-sandwich with a conserved
Ca2þ-binding site at the variable rim (Rudenko
et al. 2001; Araç et al. 2007; Reissner et al. 2008).

I) Establishment II) Assembly

III) Specification IV) Plasticity

= Heterophilic trans-synaptic
cell adhesion molecules

= Homophilic trans-synaptic
  cell adhesion molecules

Figure 1. Synaptic cell adhesion and synaptic function. Synaptic cell adhesion involves multiple, partially over-
lapping processes. (I) Initial establishment of axo-dendritic contacts may require heterophilic and homophilic
cell adhesion molecules to recognize appropriate pre- and postsynaptic partners. During the molecular assembly
(II) and functional specification (III) of synapses, synaptic cell adhesion molecules mediate recognition, physical
cell–cell adhesion, and serve as anchor proteins to cluster or recruit receptors and components of the pre- and
postsynaptic signaling machinery. Their action eventually leads to synapses with distinct physiological proper-
ties as exemplified by distinct responses to the same stimuli. (IV) In adaptive events, for example during memory
formation, synaptic cell adhesion molecules also may contribute to structural changes and functional synaptic
plasticity such as long-term potentiation or depression.
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In a-neurexins and neurexin-related CASPR
proteins, several LNS domains are present in a
series, often with interspersed rigid EGF-like
domains; this arrangement results in a complex
L-shaped structure with two hinge-regions in
neurexin-1a (Fig. 2) (Chen et al. 2011; Miller
et al. 2011).

Leucin-rich repeats (LRRs). LRRs are not au-
tonomously folded domains but 20–30 residue
sequences with a characteristic leucine-rich se-
quence pattern. Tandem repeats of LRRs, flanked
by characteristic amino- and carboxy-terminal
sequence motifs, fold into curved solenoid
structures stabilized by extensive hydrophobic
interactions of their leucine residues.

NEUREXIN AND NEUROLIGIN
INTERACTIONS INSTRUCT SYNAPSE
SPECIFICATION AND FUNCTION

Neurexins were identified as a presynaptic re-
ceptor fora-latrotoxin, a spider toxin that causes
massive synaptic vesicle exocytosis (Ushkaryov
et al. 1992, 1993, and 1994). Neurexins are pre-
synaptic type I membrane proteins with a large
extracellular sequence and a short cytoplasmic
tail. Vertebrates contain three neurexin genes
(neurexin-1 to -3, abbreviated here as Nrx1 to
Nrx3) that produce from independent promot-
ers a longer a- and a shorter b-neurexin iso-
form. Extracellularly, a-neurexins contain six
LNS domains with three interspersed EGF-like
domains, whereas b-neurexins only contain a
single LNS-domain that is identical to the sixth
LNS-domain of the corresponding a-neurexin
(Fig. 2) (Ushkaryov et al. 1992, 1993, and 1994).
Moreover, neurexins are extensively alterna-
tively spliced at five conserved sites in their ex-
tracellular region, creating potentially thou-
sands of isoforms (Ullrich et al. 1995; Tabuchi
and Südhof 2002). Intracellularly, the short
cytoplasmic tails of neurexins contain PDZ-do-
main binding sequences that bind to CASK (a
hybrid kinase/MAGUK protein that was identi-
fied as a neurexin-interacting protein; Hata et al.
1996) and to protein 4.1 in a trimeric complex
(Biederer and Südhof 2001). Neurexins are evolu-
tionarily conserved and pan-neuronallyexpressed
(Tabuchi and Südhof 2002; Haklai-Topper et al.

2011). In vertebrates, different neurexin isoforms
and splice variants are differentially expressed,
consistent with the notion that they mediate a rec-
ognition code (Ullrich et al. 1995).

Neuroligins are postsynaptic type I mem-
brane proteins that were identified as neurexin
ligands (Ichtchenko et al. 1995, 1996). Neuroli-
gins are expressed from four genes in vertebrates
(neuroligin-1 to -4, abbreviated here as NL1 to
NL4). Primates contain nonrecombining copies
of neuroligin-4 on the X- and Y-chromosomes,
with the Y-chromosomal copy often referred to
as neuroligin-5. a- and b-neurexins both bind
to all neuroligins to form cell adhesion com-
plexes (Boucard et al. 2005). In contrast to neu-
rexins, neuroligins are specifically localized to
particular synapses. NL1 is only present at exci-
tatory synapses (Song et al. 1999), NL2 and NL4
at inhibitory synapses (Varoqueaux et al. 2004;
Hoon et al. 2011), whereas NL3 is present at
both excitatory and inhibitory synapses (Bu-
dreck and Scheiffele 2007). The extracellular
sequence of neuroligins is largely composed of
a single esterase-like domain that forms a con-
stitutive dimer, whereas their cytoplasmic tails
contain a PDZ-domain binding sequence that
recruits PSD-95 and other PDZ-domain pro-
teins (Irie et al. 1997), and tyrosine-based mo-
tif that binds to gephyrin (Poulopoulos et al.
2009). It is currently unclear how neuroligins
are specifically recruited to excitatory or inhib-
itory synapses because all neuroligins similarly
interact in vitro with excitatory- and inhibitory-
specific cytoplasmic proteins (PSD-95 and ge-
phyrin, respectively).

Binding of neurexins to neuroligins is me-
diated by the sixth LNS domain of a-neurexin
and the single LNS domain of b-neurexin, and
likely forms a trans-synaptic complex. Although
a- and b-neurexins bind to neuroligins via the
same LNS domain, their binding properties
are different (Boucard et al. 2005; Reissner et al.
2008). Moreover, different neurexin and neuroli-
gin isoforms show distinct binding affinities.
Most importantly, however, binding of neurexins
and neuroligins is tightly regulated by alter-
native splicing, especially at the splice site 4 in
the shared LNS-domain of a- and b-neurexins
(Ichtchenko et al. 1995; Boucard et al. 2005).
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Synaptic vesicleα-Neurexin

β-Neurexin Calcium channel

Neuroligin

α-Neurexin knockouts Neuroligin knockouts

• Mini (mPSC) frequency
• Release probability
• Calcium currents
• Density of inhibitory synapses
• Behavioral impairments in single KO

• Mini (mPSC) frequency and amplitude (Nlgn2)
• Basal synaptic transmission
• Postsynaptic receptor clustering
• NMDA/AMPA receptor ratio
• Behavioral impairments in single KO

Postsynaptic receptor

Figure 2. The case of neurexins/neuroligins. Presynaptic neurexins (red) and postsynaptic neuroligin dimers
(green) associate in a Ca2þ-dependent manner to form a prototypical trans-synaptic complex that reflects
the asymmetric architecture of chemical synapses. The sixth LNS domain of a-neurexins and the corresponding
single LNS domain ofb-neurexins both bind to neuroligins via hydrophobic interactions that bury the Ca2þ-ion
in the interface. Genetic deletion studies in mice revealed the essential role of both gene families at synapses be-
cause triple knockouts of either neurexin-1a/2a/3a or of neuroligin-1/2/3 are perinatally lethal, and show dra-
matic impairments in synaptic function as summarized in the text box (arrows indicate direction of change).
Note that a-neurexins and neuroligins are not essential for the formation of synaptic contacts in the brain.
The space filling models of the extracellular sequences of neurexins and neuroligins are based on homology
modeling of available crystal data, and are presented approximately to scale in the synaptic cleft. (Full-length
structures of synaptic cell adhesion proteins and of postsynaptic receptors as shown in Figures 2–4 were mod-
eled using coordinates from the protein data bank (http://www.pdb.org), models from ModBase (http://mod-
base.compbio.ucsf.edu), SWISS-MODEL Repository (http://swissmodel.expasy.org/repository/) and Phyre
(http://www.sbg.bio.ic.ac.uk/~phyre/). Missing structures were modeled manually using BLAST2MODEL
(http://dunbrack.fccc.edu) and program SPDPV (http://spdbv.vital-it.ch/). The complex structures were vi-
sualized using the open source program pymol (http://sourceforge.net/projects/pymol/).
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As summarized below, the same site of alterna-
tive splicing is also of central importance for
the interactions of neurexins with other ligands.

Cell-based assays of synapse assembly showed
that contact of dissociated neurons with neuroli-
gin-expressing nonneuronal cells results in the
recruitment of presynaptic markers (Scheiffele
et al. 2000), whereas contact of neurons with
neurexin-expressing nonneuronal cells produces
recruitment of postsynaptic markers (Graf et al.
2004; Nam and Chen 2005). The activity of neu-
roligin in this artificial synapse formation assay
depends on binding to its presynaptic partner
neurexin (Ko et al. 2009a). Although this cell-
based assay does not differentiate between syn-
apse-inducing and synapse-stabilizing activities
of a molecule, it provides a powerful approach to
dissecting the structure/function relationships
of synaptic cell adhesion molecules.

Interestingly, overexpression of neuroligins in
neurons leads to dramatic increases in neuronal
synapse density (Chih et al. 2005; Boucard et al.
2005), with specific effect of neuroligin-1 on exci-
tatory and neuroligin-2 on inhibitory synapses
(Chubykin et al. 2007). The increased synapse
density induced by neuroligin overexpression
likely reflects a stabilization of transient synaptic
contacts by neuroligins because it is activity-de-
pendent (Chubykin et al. 2007; Ko et al. 2011).
Similar changes were also observed upon trans-
genic overexpression of neuroligins in mice
(Hines et al. 2008; Dahlhaus et al. 2010), whereas
deletion of neuroligins does not decrease syn-
apse density (Varoqueaux et al. 2006; see discus-
sion below). At least in the case of neuroligin-1,
the increase in neuronal synapse density induced
by overexpression is independent of the cyto-
plasmic tail of neuroligin-1, its dimerization, or
its binding to neurexins (Ko et al. 2009a, 2011).

Studies of knockout mice have revealed vital
functions for a-neurexins and neuroligins in
organizing synapses. The combined knockout
of all three a-neurexins is lethal at birth, likely
because of a strong impairment in neurotrans-
mitter release (Fig. 2) (Missler et al. 2003; Zhang
et al. 2005a). Specifically, triplea-neurexin knock-
out mice showed an almost complete abatement
of glutamatergic synaptic transmission in acute
brainstem slices and in cultured cortical slices,

but no significant decrease in glutamatergic syn-
apse density (Missler et al. 2003). Survival of
a-neurexin double-knockout mice is also com-
promised,andanimalsreachingadulthoodshow
lowered inhibitory synapse densities, whereas
excitatory synapse numbers remain unchanged
(Missler et al. 2003). Even single a-neurexin
knockout mice show a survival phenotype, and
neurexin-1a single knockout mice display de-
creased excitatory transmission in the hippo-
campus and behavioral deficits (Etherton et al.
2009). In addition, the triplea-neurexin knock-
out mice show changes in postsynaptic NMDA
receptor function (Kattenstroth et al. 2004),
and neurexins physically bind to GABAA-recep-
tors and acetylcholine receptors (Cheng et al.
2009; Zhang et al. 2010). Despite this wealth of
information, however, the precise role of neurex-
ins remains incompletely understood; although
the data are best explained by an organizing
function of neurexins in coordinating the re-
cruitment of calcium channels and components
of the release machinery to presynaptic termi-
nals with the assembly of postsynaptic special-
izations, the molecular mechanisms involved re-
main uncharacterized. As we will see below, one
reason for this uncertainty is the bewildering
number of extracellular trans-synaptic interac-
tion partners for neurexins that extend beyond
neuroligins—themselves central players in syn-
apse organization—to proteins such as leucine-
rich repeat transmembrane proteins (LRRTMs),
cerebellins, and dystroglycan.

Triple knockout of NL1, NL2, and NL3 also
results in perinatal lethality caused by an im-
pairment of transmission (Varoqueaux et al.
2006). Similar to the triple a-neurexin knock-
out, the triple neuroligin knockout has no ma-
jor effect on overall synapse numbers, again
supporting a role of this protein family in or-
ganizing synapses. Consistent with its localiza-
tion, the single knockout of NL1 selectively im-
pairs the strength of excitatory synapses and
decreases the ratio of NMDA- to AMPA-recep-
tor mediated responses, whereas single knock
out of NL2 selectively depresses inhibitory syn-
aptic transmission (Chubykin et al. 2007; Pou-
lopoulos et al. 2009). Interestingly, paired re-
cordings in the somatosensory cortex revealed
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that the NL2 knockout does not affect all in-
hibitory synapses equally, but selectively only
dampened inputs from fast-spiking interneu-
rons without decreasing connectivity (Gibson
et al. 2009). Thus, NL2 does not function as a
general organizer of all inhibitory synapses, but
acts in a selected subset of inhibitory synapses
in a neuron. Studies in Drosophila, Caenorhabdi-
tis elegans, and Aplysia support the notion that
neurexins and neuroligins control synapse mor-
phology and composition, at least in inverte-
brates (Li et al. 2007; Banovic et al. 2010; Choi
et al. 2011; Haklai-Topper et al. 2011; Sun et al.
2011).

In contrast to knockout studies, RNAi-me-
diated knockdowns have suggested in some
cases that acute loss-of-function of a single neu-
rexin and neuroligin isoform results in a dra-
matic loss of synapses in rodent neurons (e.g.,
see Chih et al. 2003; de Wit et al. 2009; Shipman
et al. 2011). However, other studies found no
effect of RNAi-mediated knockdown of single
or multiple neuroligin isoforms on synapse den-
sity (Ko et al. 2011; Zhang et al. 2010), evenwhen
performed in vivo (Soler-Llavina et al. 2011).
Apotentialproblemwith RNAi-mediatedknock-
down experiments are off-target effects, as shown
for example for knockdown of LRRTMs (Ko
et al. 2011). A further issue in RNAi-mediated
knockdowns of neuroligins, LRRTMs, and sim-
ilar molecules is that classical rescue experi-
ments are not possible because overexpression
of the target molecules used for rescue by itself
causes a gain-of-function phenotype. It is possi-
ble that genetic knockouts of neuroligins and
a-neurexins are partly developmentally compen-
sated, such that some phenotypes are not present
in constitutive knockouts (such as a loss of syn-
apses) whereas others are (such as a loss of syn-
aptic function). Conditional knockout mice are
now being generated to test this possibility.

OTHER LIGANDS FOR NEUREXINS
AND NEUROLIGINS

Neurexins and neuroligins not only interact with
each other, but also with other proteins (Fig. 3).
Neurexins bind to at least two other synapse-or-
ganizing proteins, the LRRTM membrane pro-

teins that induce presynaptic terminals in hip-
pocampal neurons (de Wit et al. 2009; Ko et al.
2009b; Siddiqui et al. 2010) and to cerebellins
that participate in synapse formation at least
in Purkinje cells (Uemura et al. 2010; Matsuda
and Yuzaki 2011). The binding of LRRTMs to
neurexins is competitive with neuroligins be-
cause the binding site partly overlaps, and is
tightly regulated by alternative splicing at splice
site #4 (Fig. 3) (Ko et al. 2009b; Siddiqui et al.
2010). Binding of cerebellins to neurexins is
also controlled by alternative splicing at site 4,
but here an insert in splice site 4 is required
for binding to cerebellins (Uemura et al. 2010;
Matsuda and Yuzaki 2011). Morever, Ca2þ is
required for binding of neurexins to neuroligins
and LRRTMs (Ichtchenko et al. 1995; Ko et al.
2009b), but not for binding of neurexins to cer-
ebellins (Uemura et al. 2010; Matsuda and Yu-
zaki 2011).

Recent systematic studies explored the im-
portance of the neurexin-binding partners ne-
uroligin-1 and -3 vs. LRRTM2 and LRRTM3
at excitatory synapses in cultured neurons (Ko
et al. 2011) and in vivo (Soler-Llavina et al.
2011). Only a combined loss-of-function of
neuroligin-1 and -3 (which are the only neuro-
ligins at excitatory synapses) and LRRTM2 and
LRRTM3 (which are the only LRRTMs ex-
pressed at significant levels in the hippocampal
neurons examined) suppressed excitatory but
not inhibitory synapse densities in cultured neu-
rons but not invivo. Interestingly, the decrease in
synapse density induced by the loss-of-function
of neuroligins and LRRTMs in cultured neurons
was completely activity-dependent, similar to
the increase induced by overexpression (Ko et al.
2011). In these experiments, “knockdown” neu-
rons were in a competition for synapses with
surrounding wild-type neurons. Overall, these
experiments together with the knockout data
suggest that neurexin ligands do not act as syn-
aptic glues, but as cell-autonomous, activity-
dependent regulators of synapse function, with
their dysfunction leading to synapse elimination
in some circumstances.

a-Neurexins also bind to dystroglycan, which
is abundantly expressed in neurons (Sugita et
al. 2001), and to the neuropeptide-like protein
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neurexophilin (Missler et al. 1998). Both inter-
act with the second LNS domain of a-neurex-
ins. Moreover, neuroligins exert neurexin-inde-
pendent synapse-organizing functions (Ko et al.
2009a; Banovic et al. 2010) suggesting that ad-
ditional synaptic partners for neuroligins must
exist.

CADHERINS INFLUENCE EARLY SYNAPSE
DEVELOPMENT AND IMPACT SYNAPTIC
PLASTICITY

Classical cadherins are among the best-studied
adhesion molecules and also contribute to syn-
aptic cell adhesion. They contain five extracellu-
lar cadherin repeat domains (EC1–5), with the
amino-terminal EC1 domain mediating adhe-
sion in trans (Fig. 4) (Pokutta and Weis 2007).
N-cadherin, the most prominent classical cad-

herin in brain, is localized to sites surround-
ing synapses (Uchida et al. 1996). It does not
control synapse number and is not involved in
synapse formation as such but likely plays broad
modulatory roles in synapse development (Jüng-
ling et al. 2006). N-cadherin accumulates at
nascent synapses with a delay after axo-dendritic
contact (Benson and Tanaka 1998), and con-
tributes to the structural maturation of postsyn-
aptic sites through catenin signaling (Togashi
et al. 2002; Bamji et al. 2003; Elia et al. 2006).
Synaptic activity drives N-cadherin into spines,
the postsynaptic elements of excitatory synap-
ses, and stabilizes the structural changes that
occur during LTP in developing and mature
synapses (Bozdagi et al. 2010; Mendez et al.
2010). This homophilic adhesion molecule also
acts across the synaptic cleft to modulate pre-
synaptic plasticity (Jüngling et al. 2006) and

α-, β-Dystroglycan LRRTM2 GABAA receptor Cerebellin, GluRδ2

Neurexophilin

Figure 3. Neurexins as synaptic anchors for macromolecular complexes. Because of the versatile nature of their
LNS domains, a- and b-neurexins can interact with several binding partners (see insets) that either compete for
the same interaction site such as neuroligin-1 and LRRTM2, or may bind at completely different sites such as
neurexophilin. Because neuroligins form dimers, mixed complexes of a- and b-neurexins with neuroligin
may exist, and may even recruit additional binding partners of a-neurexins, possibly leading to large multimo-
lecular clusters. Direct or indirect association with ligand- or voltage-dependent ion channels (e.g., GABAAR,
GluR, NMDAR, CaV2.x, see text for discussion) provides a means of determining synaptic properties or mod-
ulating synaptic strength. The space filling models of neurexins and their binding partners are based on homol-
ogy modeling of available crystal data, and are presented approximately to scale in the synaptic cleft.

M. Missler et al.

8 Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a005694

 Cold Spring Harbor Laboratory Press on January 27, 2012 - Published by cshperspectives.cshlp.orgDownloaded from 

http://cshperspectives.cshlp.org/
http://www.cshlpress.com


reduced presynaptic N-cadherin adhesion alters
synaptic vesicle recycling (Togashi et al. 2002).
The synaptic functions of N-cadherin comple-
ment other properties of classical cadherins in
neuronal development, such as their cosegrega-
tion with motor neuron pools that is indicative
of conveying neuronal identity and may con-
tribute to neuronal connectivity (Price et al.
2002).

Although N-cadherin is the best-studied
member of the cadherin family at synapses,
other cadherin-related proteins are also likely
important for synapse assembly and function.
In Drosophila, a GPCR of this cell adhesion

family called flamingo (vertebrate homolog:
CELSR) contains multiple cadherin repeats and
has been implicated in specifying planar cell
polarity and synapse specificity (Formstone
2010). Protocadherins constitute a large and di-
verse protein family with ubiquitouslyexpressed
members that may also be present, at least in part
at synapses. For example g-protocadherins are
at least partly synaptic (Phillips et al. 2003),
and are required for the postnatal survival of in-
terneurons in the spinal cord (Wang et al. 2002).
This phenotype of neuronal lethality could be
alleviated by impairing apoptosis, allowing to
show that the loss of the g-protocadherin gene

N-Cadherin
 Modulate synaptic function

• Density of excitatory synapses
• PSD length
• Mini (mEPSC) frequency
• Induction of LTD
• Spatial learning behavior

• Density of excitatory synapses
• Mini (mEPSC) frequency
• Induction of LTD
• Spatial learning behavior

SynCAM1 knockout SynCAM1 overexpression

SynCAM
  Organize excitatory synapses

SALM
  Cluster postsynaptic molecules

NCAM
  Regulate synaptic plasticity

Presynaptic

Postsynaptic

Figure 4. Complexes by synaptic cell adhesion molecule families. Trans-synaptic complexes also occur between
members of the same synaptic cell adhesion molecule family. The examples shown here contain multimers of
characteristic extracellular domains such as Ig-domains (e.g., in SynCAM), EC domains (e.g., in N-cadherin),
or LRR repeats (e.g., in SALM). The actual combinatorial code is not always as simple as depicted in the diagram
because homomeric as well as heteromeric (e.g., SynCAM 1-SynCAM 2) binding occurs, and there are instances
in which synaptic cell adhesion molecules act without formation of a known bona fide trans-synaptic complex
(e.g., in SALMs, or NCAMs). Complexes between members of synaptic cell adhesion molecule family affect di-
verse aspects of synaptic function and plasticity. Although none of these gene families is essential for the estab-
lishment of the majority of synaptic contacts in the brain, analyses of SynCAM 1 knockout and transgenic mice
have pointed to an essential role in the formation of excitatory synapses as summarized in the text box below
the synapse diagram (arrows indicate direction of change). The space filling models are presented approximately
to scale.
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cluster leads to synaptic deficits in mouse spinal
cord (Weiner et al. 2005). Similarly, calsyntenins
are cadherin-related proteins that are enriched in
postsynaptic densities, although their functions
remain uncharacterized (Hintsch et al. 2002).

SynCAM, LAR-TYPE RECEPTOR
PHOSPHOTYROSINE PHOSPHATASES,
AND OTHER IG-DOMAIN PROTEINS

Many Ig-domain proteins have been localized
to synapses, with the most conclusive evidence
provided for a synaptic role of SynCAMs and
of receptor phosphotyrosine phosphatases be-
longing to the LAR family.

SynCAM synaptic cell adhesion molecules
(also named Cadm or nectin-like molecules)
promote excitatory but not inhibitory synapse
numbers (Fig. 4). The four members of this
vertebrate-specific gene family contain three ex-
tracellular Ig-domains, a single transmembrane
region, and intracellular FERM- and PDZ-do-
main-binding motifs whose similarities to those
of neurexins led to SynCAM identification (Bie-
derer et al. 2002; Biederer 2006). SynCAM pro-
teins are predominantly expressed in the brain
and localize to pre- and postsynaptic sites (Bie-
derer et al. 2002; Thomas et al. 2008).

SynCAM 1 localizes in developing neurons
to the surface of axonal growth cones and
shapes them through its partner focal adhesion
kinase (Nozumi et al. 2009; Stagi et al. 2010).
Analogous to a “contact sensor” of growth cones,
SynCAM 1 assembles rapidly at axo-dendritic
contacts into stable adhesion complexes, which
then accumulate synaptic markers (Stagi et al.
2010). At maturing synapses, SynCAM pro-
teins form specific homo- and heterophilic
complexes through their Ig-domains whose ad-
hesive strength is regulated by site-specific N-
glycans, including sialic acid; and postsynaptic
SynCAMs act across the synaptic cleft to pro-
mote functional excitatory synapse number
(Fogel et al. 2007, 2010). Elevated SynCAM 1 in-
creases the number of functional excitatory
synapses in a transgenic mouse model, and syn-
aptic SynCAM adhesion additionally mediates
synapse maintenance (Robbins et al. 2010).
Conversely, the loss of SynCAM 1 reduces excita-

tory synapse number and transmission and
shortens synaptic membrane specializations. At
mature synapses, SynCAM 1 negatively regulates
long-term depression and impacts spatial learn-
ing. Roles of SynCAM 1 in the wiring and plas-
ticity of neuronal networks are supported by
its unusually dynamic expression in the visual
cortex during adaptive changes of eye-specific
responses (Lyckman et al. 2008) and during
the restoration of synapses by spinal cord moto-
neurons following injury (Zelano et al. 2009).
The functions of other SynCAM family mem-
bers in the brain remain to be analyzed, but the
tight binding of SynCAM 2 to SynCAM 1, the
ability of SynCAM 2 to induce synapses, and
the presence of SynCAM 3/nectin-like molecule
1 at axon terminal/glia cell contacts (Kakunaga
et al. 2005) point to partially overlapping roles in
synapse development.

Nectins are a family of Ig-domain adhesion
proteins that share the extracellular domain or-
ganization of SynCAM molecules but have differ-
ent cytosolic partners. Asymmetric interactions
of nectins promote the formation of puncta ad-
herentia, adhesion sites similar to tight junc-
tions that likely provide mechanical stability at
parasynaptic sites and at connections of spines
to astrocytic processes, but the participation of
nectins in synapses remains to be elucidated
(Mizoguchi et al. 2002; Togashi et al. 2006).

Receptor phospho-tyrosine phosphatases
(RPTPs) of the LAR family include LAR (leuko-
cyte-associated receptor), RPTPs, and RPTPd
(Chagnon et al. 2004). Their extracellular do-
mains are composed of three Ig-domains and
eight fibronectin type III repeats. LAR-type
RPTPs have been implicated in synapse forma-
tion via binding to their intracellular interac-
tion partner a-liprin, although alternatively a
presynaptic site of action (Zhen and Yin 1999;
Kaufmann et al. 2002) and a postsynaptic site
of action was suggested (Dunah et al. 2005).
Extracellularly, two trans-synaptic ligands were
described for this class of RPTPs, in both cases
suggesting a presynaptic localization of the
RPTP: netrin-G ligands (Woo et al. 2009; see de-
scription under LRR proteins below) and the
neurotrophin receptor TrkC (Takahashi et al.
2011).
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In addition to SynCAMs and RPTPs, other
Ig-domain proteins such as contactins and
members of the NCAM/L1 family have been
implicated in synapse formation and function
(reviewed in the work of Dityatev et al. 2008;
Zuko et al. 2011). Presynaptically, NCAM iso-
forms play important roles at developing neu-
romuscular junctions, in which they control
the distribution of release sites (Polo-Parada
et al. 2004) and promote the physiological mat-
uration of vesicle recycling (Hata et al. 2007).
Postsynaptically, NCAM clustering influences
the assembly of cytoskeletal scaffolds (Sytnyk et
al. 2006) and contributes to LTP (Muller et al.
1996).

Finally, an important additional role of cell
adhesion is to instruct where synaptic sites are
formed. Several Ig-domain proteins have been
implicated in this role. For example, such an
instructive role is mediated in the retina by
the sidekicks and Dscam Ig-domain proteins,
which ensure proper lamina connectivity (Ya-
magata et al. 2002, 2008). Similarly, in C. elegans
the Ig-domain proteins Syg-1 and Syg-2 are not
directly related to synapse formation, but guide
synapse formation to the right place in one par-
ticular neuron (Shen et al. 2004). In a compara-
ble manner, adhesive interactions mediated by
the Ig proteins neurofascin and CHL1 spatially
define synapses formed by basket interneurons
and stellate cell axons, respectively, onto Pur-
kinje cells on a subcellular level (Ango et al.
2004, 2008).

LEUCINE-RICH REPEAT PROTEINS
ORGANIZE BOTH PRE- AND
POSTSYNAPTIC SITES

Several families of LRR proteins were shown
to function at synapses, in particular LRRTMs,
netrin-G ligands (NGLs), and synaptic adhe-
sion-like molecules (SALMs, also known as Lrfn
proteins).

Netrin-G1 and –G2 are netrin isoforms unique
to vertebrates that are attached to axonal mem-
branes by a GPI anchor (Nakashiba et al. 2002).
As indicated by their name, NGLs were identi-
fied by binding to netrin-G1 (Lin et al. 2003),

and are also called LRRC4 (Zhang et al. 2005b).
The three vertebrate NGLs (NGL1-3) are type
I membrane proteins composed of an extra-
cellular LRR sequence, a single Ig-domain, a
transmembrane region, and a short cytoplasmic
tail capable of binding PSD-95 (Woo et al. 2009).
NGLs are localized to postsynaptic membranes,
in which NGL1 and NGL2 are thought to inter-
act with presynaptic netrin-G1 and -G2 (Kim
et al. 2006), and NGL3 with LAR-type RPTPs
(Woo et al. 2009). Mice lacking either netrin-G2
or NGL2 show mild behavioral defects but are
viable and fertile, indicating that the netrin-
G/NGL system may serve primarily as a modu-
latory signaling system for synapses (Zhang
et al. 2008).

Apossible synaptogenic function of LRRTMs,
which were identified by bioinformatics (Laurén
et al. 2003), was discovered in a systematic screen
for synaptogenic proteins using theartificial syn-
apse formation assay (Linhoff et al. 2009). Strik-
ingly, protein-interaction studies subsequently
revealed that LRRTMs bind to neurexins in a
splice-site 4-dependent manner (see discussion
above; de Wit et al. 2009; Ko et al. 2009b; Siddiqui
et al. 2010). Single knockoutof LRRTMshasonly
minor phenotypes (Linhoff et al. 2009), and
knockdown of all major LRRTMs expressed in
a particular type of neuron in vitro or in vivo
does not produce a loss of synapses, but decreases
AMPA-receptor dependent trafficking (Ko et al.
2011; Soler-Llavina et al. 2011). As described
above, the loss of synapses reported for one
LRRTM2 shRNA construct (de Wit et al. 2009;
Ko et al. 2011) likely reflects an off-target effect.

A third family of LRR-containing mem-
brane proteins with synapse-organizing func-
tions in vertebrates are SALMs (reviewed in
Nam et al. 2011). Five SALM genes are expres-
sed in vertebrates. SALMs are type I membrane
proteins composed of an amino-terminal LRR
domain, a single Ig-domain and fibronectin III
domain, a transmembrane region and a cyto-
plasmic tail that binds to PSD-95 for SALM1-
3, but not SALM4 and SALM5 (Ko et al. 2006;
Wang et al. 2006). On the extracellular side,
SALM4 and SALM5 form homophilic com-
plexes (Seabold et al. 2008), and at least a subset
of SALMs may interact with AMPA- and/or
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NMDA-type glutamate receptors (Ko et al. 2006;
Wang et al. 2006). Moreover, SALMs may influ-
ence neuronal development and neurite out-
growth, but the precise role of SALMs in synap-
ses remains unclear.

TYROSINE KINASE RECEPTOR SIGNALING
IN EXCITATORY SYNAPSE DEVELOPMENT

In addition to classical adhesion molecules,
transmembrane tyrosine kinase receptors have
been implicated in synapse formation. Notably,
EphB receptor tyrosine kinases are thought
to produce a postsynaptic signal upon extracel-
lular binding of their ephrin ligands, and to
engage several small Rho family GTPases, in-
cluding RhoA and Rac1, as a result, thereby re-
modeling the actin cytoskeleton of postsynaptic
spines (Lai and Ip 2009). The combined dele-
tion of EphB1-3 receptors in mice strongly
reduces synapse density and alters the morphol-
ogy of dendritic spines (Henkemeyeret al. 2003).
A synapse-inducing role of EphB receptors was
corroborated in cultured hippocampal neurons.
EphB2 receptor signaling from postsynaptic
sites triggers presynaptic differentiation through
ephrin binding, which stabilizes a subset of
synapses (Kayser et al. 2006). Similarly, postsyn-
aptic EphB2 receptors engage presynaptic eph-
rinB ligands to induce and mature retinotectal
synapses in Xenopus (Lim et al. 2008). EphB2
additionally may organize postsynaptic mem-
branes in cis through lateral interactions with
NMDA receptors (Dalva et al. 2000). However,
transmembrane ephrin ligands were also shown
to be present at excitatory postsynaptic sites
where they promote spine density and matura-
tion and AMPA receptor trafficking (Segura
et al. 2007). Moreover, postsynaptic ephrinB3
ligand in addition controls the number of
dendritic shaft synapses, a subset of excitatory
synapses (Aoto et al. 2007). The activation of
postsynaptic EphA receptors, which bind the
GPI-anchored ephrinA ligands expressed in as-
trocytes, in contrast leads to spine retraction
(Murai et al. 2003; Bourgin et al. 2007). Overall,
it seems likely that Ephrin/Eph receptor interac-
tions are major determinants of synaptic func-
tion via cytoskeletal reorganizations, a role that

they also perform in many other cellular proc-
esses, and the specific trans-synaptic roles of
ephrin/Eph receptor interactions remain to be
elucidated.

Other transmembrane receptor tyrosine ki-
nases share important functions at excitatory
synapses. These include Trk receptors, which me-
diate neurotrophin signaling and are necessary
for proper synapse density and ultrastructure,
and modulate activity-dependent structural and
functional changes at synapses (Rico et al. 2002;
Luikart et al. 2005; Rex et al. 2007), in addition
to their noncatalytic role mediated by bind-
ing to LAR-type RPTPs (Takahashi et al. 2011;
see above). Signaling by the insulin receptor
also promotes synapse number and function
as shown in the Xenopus optic tectum and alters
dendrite dynamics (Chiu et al. 2008). Another
family of receptor tyrosine kinases, the ErbB
receptors, is known to act in the formation of
neuromuscular junctions. Roles in central syn-
apses are emerging, with the ErbB4 ligand neu-
regulin-1 enhancing GABA release from cortical
interneurons (Woo et al. 2007).

ADDITIONAL SURFACE INTERACTIONS
REGULATE SYNAPSE DEVELOPMENT AND
PHYSIOLOGY

Integrins are another prominent class of adhe-
sion molecules that promote synapse matura-
tion (Chavis and Westbrook 2001). Integrins
also impact synaptic physiology as loss of their
b1 subunit impairs LTP (Chan et al. 2006;
Huang et al. 2006). Trans-synaptic interactions
are not limited to classic adhesion molecules,
though, as shown by the neuronal pentraxins.
This protein family binds extracellularly to
AMPA receptors and can form trans-synaptic
complexes to organize excitatory synapse devel-
opment (O’Brien et al. 2002; Koch et al. 2010).

SYNAPTIC CELL ADHESION AND
BRAIN DISORDERS

Studies of synapse structure have not only pro-
vided crucial keys to understanding synapse
development. They have also shown that the al-
tered morphology of excitatory synapses can be
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linked to neurological and neurodevelopmental
disorders. Human genetic analyses of autism-
spectrum disorders both in hereditary cases
and through genome-wide association studies
point to a synaptic etiology. These analyses
have established strong genetic links of muta-
tions in synaptic cell adhesion molecules to
autism-spectrum disorders, notably in neuroli-
gins and neurexins (reviewed in Südhof 2008).
In the case of two autism-linked neuroligin mu-
tations, mouse models have corroborated the
human genetic findings (Tabuchi et al. 2007; Ja-
main et al. 2008). These results endorse the
hypothesis that neurodevelopmental disorders
can stem from synapse disorganization and im-
balanced neuronal excitation and inhibition
(Zoghbi 2003; Bourgeron 2009). Studies of syn-
aptic cell adhesion are therefore likely to contrib-
ute importantly to understanding both synaptic
biology and human brain disorders.

CONCLUDING REMARKS: FOUR
OPEN QUESTIONS

Synapse formation requires mechanisms that
demarcate and align future synaptic sites, and
differentiate nascent synapses into maturity. As
reviewed in this work, a select group of synaptic
cell adhesion and signaling proteins organizes
these processes. However, we are only at the be-
ginning of an understanding of how synapses
are formed and maintained. Four key questions
stand out. First, do individual synapse-orga-
nizing proteins actually instruct synaptic cell
adhesion in vivo, or do the functions of trans-
synaptic interactions result from cooperativity
among different adhesion molecules? Second,
how do these trans-synaptic interactions act at
mature synapses to alter plasticity and mainte-
nance? Third, is the functional role of synapse-
organizing molecules strictly defined, or does it
change during the lifetime of a synapse? Fourth,
which intracellular signaling pathways do these
proteins engage? Addressing these questions
will integrate our understanding of how synap-
tic cell adhesion molecules guide synapse devel-
opment and the plasticity of mature synapses
and how altered synaptic cell adhesion can un-
derlie brain disorders.
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Südhof TC. 2002. SynCAM, a synaptic adhesion molecule
that drives synapse assembly. Science 297: 1525–1531.

Boucard AA, Chubykin AA, Comoletti D, Taylor P, Südhof
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2001. A stoichiometric complex of neurexins and dystro-
glycan in brain. J Cell Biol 154: 435–445.

Sun M, Xing G, Yuan L, Gan G, Knight D, With SI, He C,
Han J, Zeng X, Fang M, et al. 2011. Neuroligin 2 is re-
quired for synapse development and function at the Dro-
sophila neuromuscular junction. J Neurosci 31: 687–699.

Sytnyk V, Leshchyns’ka I, Nikonenko AG, Schachner M.
2006. NCAM promotes assembly and activity-dependent
remodeling of the postsynaptic signaling complex. J Cell
Biol 174: 1071–1085.
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